Translation between ASCII characters and IBM 1401 characters


The IBM 1401 is a six bit BCD machine
Of the possible 64 characters, there are 63 card punch codes to define each character.

The CBA8421 A only combination does not have a card code without a special RPQ.

The standard ASCII character set uses 7 bits and 96 printable characters.

To run on a PC or MAC, the upper case alphabetic characters and numbers are easy. 

The rest get a bit harder.

One such assignment of ASCII characters is defined in the enclosed "SyndersTable.doc"

While there are several choices, we at the Computer History Museum use the SIM-H table.
We use Van Snyder's Autocoder, Bob Supnik's SIMH 1401 simulator and Ron Mak's ROPE IDE to develop code for the 1401.

When you are successful with your code, you are left with an ASCII file that needs to be punched into cards. (No easy task sitting at a keypunch)

The team at the Computer History Museum developed a PC controlled keypunch.
The PC reads the ASCII file and commands the correct punch codes to the keypunch.

In order to do this, the PC must have a table to do the translation from ASCII to required punches.
The table is defined in the enclosed SetTable.c

The Computer History Museum also has a PC connected directly to the Connecticut IBM 1401.

That PC sends data to the 1401 and receives data from the 1401.

In order to do this, the PC must specify all eight 1401 bits including parity (CBA8421M).
The value for each character is stored as a decimal value in the program.

The table is defined in the enclosed SetASCIITo1401Table.c

The enclosed file PDFFILE10.xls defines all translations and generates code for the PC controlled PC and the 1401 attached PC.

The table started with Van Snyder's table associating SIMH ASCII characters to the internal BA8421 bits.

I added parity (C) to each character.

Given the BA8421 bits, I used the 1401 documentation to define the corresponding required card punches.

After several years of patching these tables, I think I have it right.
Stan Paddock

June 11, 2016
